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Abstract. Let {an}n≥0 and {bn}n≥0 be sequences of scalars. Suppose an ̸= 0 for all n ≥ 0.
We consider the tridiagonal kernel (also known as band kernel with bandwidth one) as

k(z, w) =

∞∑
n=0

((an + bnz)z
n)((an + bnw)wn) (z, w ∈ D),

where D = {z ∈ C : |z| < 1}. Denote by Mz the multiplication operator on the reproducing
kernel Hilbert space corresponding to the kernel k. Assume that Mz is left-invertible. We

prove that Mz = compact + isometry if and only if | bnan
− bn+1

an+1
| → 0 and | an

an+1
| → 1.

1. Introduction

A bounded linear operator T on a Hilbert space H (T ∈ B(H) in short) is called semi-
Fredholm if the range space ranT is closed and at least one of the spaces kerT and kerT ∗ is
of finite dimension. If T is semi-Fredholm then

ind(T ) = dimkerT − dimkerT ∗,

is called the index of T . We shall always assume that our Hilbert spaces are separable and
over C. The starting point of our present note is the following classification of compact
perturbations of isometries [6, page 191]:

Theorem 1.1 (Fillmore, Stampfli, and Williams). Let T ∈ B(H). Then T = compact +
isometry if and only if I − T ∗T is compact and T is semi-Fredholm with ind(T ) ≤ 0.

In this note, we are interested in a quantitative version of the above theorem. For instance,
consider a bounded sequence of non-zero scalars {wn}n≥0 and an infinite-dimensional Hilbert
space H with an orthonormal basis {en}n≥0. Then the weighted shift Sw defined by

Sw(en) = wnen+1 (n ≥ 0),

is in B(H) with ∥Sw∥ = supn |wn|. Since kerSw = {0} and kerS∗
w = {e0}, it follows that Sw

is semi-Fredholm and ind(Sw) = −1. Moreover, using the fact that S∗
we0 = 0 and S∗

wen =
w̄n−1en−1, n ≥ 1, it follows that

I − S∗
wSw = diag(1− |w0|2, 1− |w1|2, . . .).

Theorem 1.1 then readily implies that

(1.1) lim
n→∞

|wn| = 1 if and only if Sw = compact + isometry.

We note that in this case the weight sequence is bounded away from zero and hence Sw is
necessarily left-invertible.

2020 Mathematics Subject Classification. Primary: 46E22, 47B38, 47A55; Secondary: 47B07, 30H10,
47B37.

Key words and phrases. Tridiagonal kernels, perturbations, compact operators, isometries, shifts.
1



2 DAS AND SARKAR

Also note that Sw is a concrete example of a left-invertible shift on an analytic Hilbert
space. To be more precise, let D denote the open unit disc in C. A function k : D× D → C
is called an analytic kernel if k analytic in the first variable and k is positive definite, that is

n∑
i,j=1

cj c̄ik(zi, zj) ≥ 0,

for all {zi}ni=1 ⊆ D, {ci}ni=1 ⊆ C and n ≥ 1. In this case, there exists an analytic Hilbert
space Hk of analytic functions on D such that {k(·, w) : w ∈ D} is a total set in Hk. The
shift on Hk is defined by Mzf = zf , f ∈ Hk. We will always assume in the sequel that
Mz is bounded. Since k is analytic in the first and (automatically) co-analytic in the second
variable, it follows that

k(z, w) =
∑

m,n≥0

cmnz
mw̄n (z, w ∈ D).

When cmn = 0 for all |m−n| ≥ 2 (|m−n| ≥ 1), we say that Hk is a tridiagonal space (diagonal
space) and k is a tridiagonal kernel or band kernel with bandwidth 1 (diagonal kernel).

A standard computation now reveals that Sw, under some appropriate assumption on the
weight sequence {wn}n≥0 [9, proposition 7], is unitarily equivalent to Mz on a diagonal space.
Therefore (1.1) yields a quantitative classification of shifts on diagonal spaces that are compact
perturbations of isometries. This motivates the following natural question:

Question 1. Is it possible to find a quantitative classification of left-invertible shifts on
analytic Hilbert spaces that are compact perturbations of isometries?

The main purpose of this note is to provide an answer to the above question for the case
of Mz on (tractable) tridiagonal spaces. Throughout the paper, we fix sequences of scalars
{an}n≥0 and {bn}n≥0 with the assumption that an ̸= 0, n ≥ 0. We set

fn(z) = (an + bnz)z
n (n ≥ 0),

and consider the Hilbert space Hk with {fn}n≥0 as an orthonormal basis. Then Hk is a
tridiagonal space corresponding to the tridiagonal kernel

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D).

We always assume that {| an
an+1

|}n≥0 is bounded away from zero and

sup
n≥0

| an
an+1

| < ∞ and lim sup
n≥0

| bn
an+1

| < 1.

The latter two assumptions ensure that Mz on Hk is bounded [1, Theorem 5], whereas the
first assumption implies that Mz is left-invertible [5, Theorem 3.5]. In this case we also call
Mz a tridiagonal shift.
The notion of tridiagonal shifts was introduced by Adams and McGuire [1]. A part of their

motivation came from factorizations of positive operators on analytic Hilbert spaces [2] (also
see [8]). Evidently, if bn = 0, then k is a diagonal kernel and Mz is a weighted shift on Hk.
Therefore, in view of shifts on analytic Hilbert spaces, tridiagonal shifts are the “next best”
concrete examples of shifts after weighted shifts. The following is the answer to Question 1
for tridiagonal shifts:
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Theorem 1.2 (Main result). Let Mz be the tridiagonal shift on Hk. Then Mz = compact +

isometry if and only if | an
an+1

| → 1 and | bn
an

− bn+1

an+1
| → 0.

In Section 3, we present the proof of the above theorem. In Section 2 we prove a key
proposition that says that if T ∈ B(H) is a left-invertible operator and if T is of finite index,
then T = compact + isometry if and only if LT − T ∗ is compact, where LT = (T ∗T )−1T ∗.
Section 4 concludes the paper with some general remarks and additional observations.

2. Preparatory results

The aim of this section is to prove a key result of this paper. We begin with some elementary
properties of left-invertible operators. See [10] for more on this theme. Let T ∈ B(H) be a
left-invertible operator. We use the fact that T ∗T is invertible to see that

LT = (T ∗T )−1T ∗,

is a left inverse of T . Note that (TLT )
2 = TLT = (TLT )

∗, that is, TLT is an orthogonal
projection. Moreover, if T ∗f = 0 for some f ∈ H, then (I − TLT )f = f . On the other hand,
if (I − TLT )f = f for some f ∈ H, then TLTf = 0 and hence T ∗TLTf = 0, which implies
that T ∗f = 0. Therefore, I − TLT is the orthogonal projection onto kerT ∗, that is

I − TLT = PkerT ∗ .

Part of the following is a particular case of [6, Theorem 6.2]. However, part (3) appears to
be new, which will be also a key to the proof of the main theorem of this paper. For the sake
of completeness, we present the argument with all details.

Proposition 2.1. Let T ∈ B(H) be left-invertible and of finite index. The following state-
ments are equivalent:

(1) T = compact + isometry.
(2) I − T ∗T is compact.
(3) LT − T ∗ is compact.
(4) I − TT ∗ is compact.

Proof. Throughout the following, we will designate compact operators by letters such as
K,K1, K2, etc.
(1) ⇒ (2): Suppose T = S +K for some isometry S on H. Then

T ∗T = (S +K)∗(S +K) = S∗S +K1 = I +K1,

implies that I − T ∗T is compact.
(2) ⇒ (3): Since I − TLT = PkerT ∗ and dimkerT ∗ < ∞, we have TLT = I + K1. Now if
I − T ∗T = K2, then LT − T ∗TLT = K3, and hence

K3 = LT − T ∗TLT = LT − T ∗(I +K1) = LT − T ∗ +K4.

This gives us LT − T ∗ = K.
To prove (3) ⇒ (4), assume that LT − T ∗ = K. Then TLT − TT ∗ = K1. Again, since
I − TLT = PkerT ∗ and dimkerT ∗ < ∞, we have

I − TT ∗ = (I − TLT ) + (TLT − TT ∗) = PkerT ∗ +K1 = K2.

(4) ⇒ (2): Let K = I − TT ∗. Then T ∗K = T ∗ − T ∗TT ∗ = (I − T ∗T )T ∗ implies that
T (I − T ∗T ) = K1, and hence

I − T ∗T = LTT (I − T ∗T ) = LTK1 = K2.
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(2) ⇒ (1) Suppose I−T ∗T = K. Since |T | is positive, we see that (I+ |T |) is invertible. Then
K = (I + |T |)(I − |T |) implies that |T | = I +K1. Let T = U |T | be the polar decomposition
of T . Taking the injectivity property of T in account, we find that U is an isometry, which
implies

T = U |T | = U(I +K1) = U +K2,

and completes the proof of the proposition.

Unlike the proof of [6], the above proof avoids employing the Calkin algebra method. Of
course, as pointed out earlier, the result of [6] (modulo part (3)) holds without the left-
invertibility assumption.

Now we turn to the tridiagonal shift Mz on Hk, where

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D),

and fn(z) = (an + bnz)z
n, an, bn ∈ C, n ≥ 0. Recall that an ̸= 0 for all n ≥ 0. More-

over, by assumption, {| an
an+1

|}n≥0 is bounded away from zero and supn≥0 | an
an+1

| < ∞ and

lim supn≥0 | bn
an+1

| < 1, which ensures that Mz is bounded and left-invertible on Hk. It will

be convenient to work with the matrix representation of Mz with respect to the orthonormal
basis {fn}n≥0. A standard computation reveals that [1, Section 3]

zn =
1

an

∞∑
m=0

(−1)m
( ∏m−1

j=0 bn+j∏m−1
j=0 an+j+1

)
fn+m (n ≥ 0),

where
∏−1

j=0 xn+j := 1. A new round of computation then gives

Mzfn =
( an
an+1

)
fn+1 + cn

∞∑
m=0

(−1)m
(∏m−1

j=0 bn+2+j∏m−1
j=0 an+3+j

)
fn+2+m (n ≥ 0),

where

(2.1) cn =
an
an+2

( bn
an

− bn+1

an+1

)
(n ≥ 0).

Therefore

(2.2) [Mz] =



0 0 0 0 . . .
a0
a1

0 0 0
. . .

c0
a1
a2

0 0
. . .

−c0b2
a3

c1
a2
a3

0
. . .

c0b2b3
a3a4

−c1b3
a4

c2
a3
a4

. . .

−c0b2b3b4
a3a4a5

c1b3b4
a4a5

−c2b4
a5

c3
. . .

...
...

...
. . . . . .


,

with respect to the orthonormal basis {fn}n≥0 [1, Page 729].
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3. Proof of the main theorem

Now we are ready to prove the main result of this paper. Throughout the proof, we will
frequently use matrix representations of bounded linear operators on the tridiagonal space
(as well as subspaces of) Hk as in (2.2).

Proof of Theorem 1.2. Since kerM∗
z = Cf0, we see that ind(Mz) = −1. Using the left-

invertibility of Mz applied to Proposition 2.1, we see that Mz = isometry + compact if and
only if LMz −M∗

z is compact. By (2.2), the matrix representation of M∗
z is given by

(3.1) [M∗
z ] =



0 ā0
ā1

c̄0
−c̄0b̄2
ā3

c̄0b̄2b̄3
ā3ā4

. . .

0 0 ā1
ā2

c̄1
−c̄1b̄3
ā4

. . .

0 0 0 ā2
ā3

c̄2
. . .

0 0 0 0 ā3
ā4

. . .
...

...
...

...
. . . . . .


.

Recall that LMz = (M∗
zMz)

−1M∗
z is a left-inverse of Mz. It follows that the matrix repre-

sentation of LMz with respect to the orthonormal basis {fn}n≥0 [5, Theorem 3.5] is given
by

[LMz ] =



0 a1
a0

0 0 0 . . .

0 d1
a2
a1

0 0
. . .

0 −d1b1
a2

d2
a3
a2

0
. . .

0 d1b1b2
a2a3

−d2b2
a3

d3
a4
a3

. . .

0 −d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . . . . .


,

where dn = bn
an

− bn−1

an−1
for all n ≥ 1. Therefore, we have the following matrix representation

of LMz −M∗
z :

[LMz −M∗
z ] =



0 (a1
a0

− ā0
ā1
) −c̄0

c̄0b̄2
ā3

− c̄0b̄2b̄3
ā3ā4

. . .

0 d1 (a2
a1

− ā1
ā2
) −c̄1

c̄1b̄3
ā4

. . .

0 −d1b1
a2

d2 (a3
a2

− ā2
ā3
) −c̄2

. . .

0 d1b1b2
a2a3

−d2b2
a3

d3 (a4
a3

− ā3
ā4
)

. . .

0 −d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . . . . .


.

Finally, by (2.1), we see that cn = an
an+2

( bn
an

− bn+1

an+1
) for all n ≥ 0, and hence

(3.2) dn+1 = −an+2

an
cn (n ≥ 0).

Now suppose that LMz − M∗
z is compact. Since {fn}n≥0 is an orthonormal basis of Hk, a

well-known property of compact operators on Hilbert spaces implies that

∥(LMz −M∗
z )fn∥ → 0 as n → ∞.
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For each n ≥ 1, use the matrix representation of LMz −M∗
z to see that

∥(LMz −M∗
z )fn+2∥2 =

∣∣∣ c0b2b3 · · · bn+1

a3a4a5 · · · an+2

∣∣∣2 + · · ·+
∣∣∣cn−1bn+1

an+2

∣∣∣2 + |cn|2

+
∣∣∣an+2

an+1

− ān+1

ān+2

∣∣∣2 + |dn+2|2 + · · · .

In particular

∥(LMz −M∗
z )fn+2∥2 ≥ |cn|2 +

∣∣∣an+2

an+1

− ān+1

ān+2

∣∣∣2 (n ≥ 1),

and hence, |cn| → 0 and |an+2

an+1
− ān+1

ān+2
| → 0 as n → ∞. Then we have∣∣∣∣∣∣an+1

an+2

∣∣∣2 − 1
∣∣∣ = ∣∣∣an+1

an+2

∣∣∣∣∣∣ ān+1

ān+2

− an+2

an+1

∣∣∣ ≤ ∣∣∣ ān+1

ān+2

− an+2

an+1

∣∣∣( sup
m

∣∣∣ am
am+1

∣∣∣),
and hence | an

an+1
| → 1. Finally, |cn| → 0 (see the definition of cn in (2.1)) and the fact that

{ an
an+2

}n≥0 is bounded imply that | bn
an

− bn+1

an+1
| → 0.

For the converse direction, we assume that | an
an+1

| → 1 and | bn
an

− bn+1

an+1
| → 0. Taken together,

these conditions mean that |cn| → 0 (see (2.1)). We claim that LMz − M∗
z is compact. To

prove this, we first let (Cf0)⊥ = H. Then, with respect to

Hk = Cf0 ⊕H,

the operator LMz −M∗
z can be represented as

LMz −M∗
z =

[
0 A
0 B

]
,

where A = PCf0(LMz −M∗
z )|H and B = PH(LMz −M∗

z )|H. Thus we only have to worry about
the compactness of B. To this end, we consider the matrix representation of B with respect
to the orthonormal basis {fn}n≥1 as

[B] =



d1 (a2
a1

− ā1
ā2
) −c̄1

c̄1b̄3
ā4

. . .

−d1b1
a2

d2 (a3
a2

− ā2
ā3
) −c̄2

. . .

d1b1b2
a2a3

−d2b2
a3

d3 (a4
a3

− ā3
ā4
)

. . .

−d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .


.

In view of the above matrix representation, we define linear operators B1, B2 and B3 on H,
which admit the following matrix representations:

[B1] = diag
(a2
a1

− ā1
ā2

,
a3
a2

− ā2
ā3

, . . .
)
,
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and

[B2] =



−c1 0 0 0
. . .

c1b3
a4

−c2 0 0
. . .

−c1b3b4
a4a5

c2b4
a5

−c3 0
. . .

c1b3b4b5
a4a5a6

−c2b4b5
a5a6

c3b5
a6

−c4
. . .

...
...

...
. . . . . .


and [B3] =



d1 0 0 0
. . .

−d1b1
a2

d2 0 0
. . .

d1b1b2
a2a3

−d2b2
a3

d3 0
. . .

−d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .


.

Assume for a moment that B1, B2 and B3 are compact. Denote by U the unilateral shift on
H corresponding to the orthonormal basis {fn}n≥1. In other words, Ufn = fn+1 for all n ≥ 1.
Then

B = B1U
∗ +B∗

2U
∗2 +B3.

Clearly, this would imply that B is compact. Therefore, it suffices to show that B1, B2 and
B3 are compact operators. Note that there exist ϵ > 0 and M > 0 such that

(3.3) ϵ <
∣∣∣ an
an+1

∣∣∣ < M.

Then ∣∣∣an+1

an
− ān

ān+1

∣∣∣ = ∣∣∣an+1

an

(
1−

∣∣∣ an
an+1

∣∣∣2)∣∣∣ < 1

ϵ

∣∣∣1− ∣∣∣ an
an+1

∣∣∣2∣∣∣,
implies that the sequence {|an+1

an
− ān

ān+1
|}n≥0 converges to zero, which proves thatB1 is compact.

We now prove that B2 is compact. Since lim sup | bn
an+1

| < 1, there exist r ∈ (0, 1) and n0 ∈ N
such that ∣∣∣ bn

an+1

∣∣∣ < r (n ≥ n0).

Write

H = (

n0−1⊕
p=1

fp)⊕ (
∞⊕
q=0

fn0+q),

and, with respect to this orthogonal decomposition, we let

B2 =

[
A1 0
A3 A2

]
.

It is now enough to prove that A2 acting on the infinite dimensional space ⊕∞
q=0fn0+q is

compact. Note

[A2] =



−cn0 0 0
. . .

cn0bn0+2

an0+3
−cn0+1 0

. . .

−cn0bn0+2bn0+3

an0+3an0+4

cn0+1bn0+3

an0+4
−cn0+2

. . .

...
...

...
. . .

(−1)n
cn0bn0+2···bn0+n

an0+3···an0+n+1
(−1)n−1 cn0+1bn0+3···bn0+n

an0+4···an0+n+1
(−1)n−2 cn0+2bn0+4···bn0+n

an0+5···an0+n+1

. . .

...
...

...
. . .


.
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Denote by Wn0 the bounded weighted shift on ⊕∞
q=0fn0+q with weight sequence { bn0+n

an0+n+1
}n≥2,

that is

[Wn0 ] =



0 0 0 0 . . .
bn0+2

an0+3
0 0 0

. . .

0
bn0+3

an0+4
0 0

. . .

0 0
bn0+4

an0+5
0

. . .

...
...

...
. . . . . .


,

and write

Dn0 = diag(−cn0 ,−cn0+1,−cn0+2, · · · ).
Suppose M0 := supn≥0 |cn|. Then

∥Dn0∥ = sup
n≥n0

|cn| ≤ sup
n≥0

|cn| = M0,

and, by the fact that cn → 0, it follows that Dn0 is a compact operator. Moreover, A2 can be
rewritten as

A2 = Dn0 −Wn0Dn0 +W 2
n0
Dn0 + · · · =

∞∑
n=0

(−1)nW n
n0
Dn0 .

Clearly, W n
n0
Dn0 is compact for all n ≥ 0, and, for m ≥ 2, we have

∥Wm
n0
∥ ≤ sup

l≥0

∣∣∣ bn0+2+lbn0+3+l · · · bn0+m+l+1

an0+3+lan0+4+l · · · an0+m+l+2

∣∣∣
≤ rm.

Finally, consider the sequence {Sn}n≥1 of partial sums of compact operators, where Sn =∑n
m=0(−1)mWm

n0
Dn0 for all n ≥ 1. Then

∥A2 − Sn∥ = ∥(−1)n+1W n+1
n0

Dn0 + (−1)n+2W n+2
n0

Dn0 + (−1)n+3W n+3
n0

Dn0 + · · · ∥

≤ M0

∞∑
m=1

rn+m

= M1r
n,

for some M1 > 0 (as 0 < r < 1), and hence A2 is the norm limit of a sequence of compact
operators. This completes the proof of the fact that B2 is compact.
It remains to prove that B3 is compact. First note that dn+1 = −an+2

an
cn for all n ≥ 0 (see

(3.2)). The estimate (3.3) then implies that cn → 0 if and only if dn → 0. In particular, we
may assume that dn → 0. We are now in a similar situation as in the proof of the compactness
of B2. The proof of the fact that B3 is compact now follows similarly as in the case of B2.

Remark 3.1. Note that if the sequence { bn
an
}n≥0 is convergent, then | bn

an
− bn+1

an+1
| → 0. But the

converse, evidently, is not true.

Note that if bn = 0 for all n ≥ 0, then Hk is a diagonal space and Mz on Hk is a weighted
shift. So in this case, Theorem 1.2 recovers the classification of (the reproducing kernel version
of) weighted shifts as obtained earlier in (1.1). We refer the reader to [9] for the transition
between weighted shifts and shifts on reproducing kernel Hilbert spaces.
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4. Concluding remarks

Let us now return to the general question (cf. Question 1) of quantitative classification of
left-invertible shifts that are compact perturbations of isometries. Clearly, the equivalence in
(1.1) and Theorem 1.2 yields a complete answer to this question for the case of weighted shifts
and tridiagonal shifts, respectively. In particular, if Mz is the Bergman shift, or the weighted
Bergman shift, or the Dirichlet shift, then (1.1) implies that Mz = compact + isometry.

However, unlike the diagonal case, it is not yet completely clear to us how to directly relate
the kernel k of the tridiagonal space Hk to the conclusion of Theorem 1.2. In other words,
our answer to Question 1 for the tridiagonal case does not seem to indicate a comprehensive
understanding (if any) of the general question.

To conclude this paper, we offer a general (but still abstract) classification of shifts that
are compact perturbations of isometries. The proof is essentially a variant of Proposition 2.1.

Proposition 4.1. Let Hk be an analytic Hilbert space. Suppose the shift Mz on Hk is left-
invertible and of finite index. Define C on Hk by

(Cf)(w) = ⟨f, (1− zw̄)k(·, w)⟩Hk
(f ∈ Hk, w ∈ D).

Then Mz = compact + isometry if and only if C defines a compact operator on Hk.

Proof. Since Mz is left-invertible, the index of Mz is negative. We know that Mz = isometry+
compact if and only if I −MzM

∗
z is compact (Proposition 2.1). A standard (and well known)

computation shows that

M∗
z k(·, w) = w̄k(·, w) (w ∈ D).

Then

(I −MzM
∗
z )k(·, w) = (1− zw̄)k(·, w) (w ∈ D).

For each f ∈ Hk and w ∈ D, we have ((I − MzM
∗
z )f)(w) = ⟨(I − MzM

∗
z )f, k(·, w)⟩Hk

, and
hence

((I −MzM
∗
z )f)(w) = ⟨f, (I −MzM

∗
z )k(·, w)⟩Hk

= ⟨f, (1− zw̄)k(·, w)⟩Hk
,

which implies that (I −MzM
∗
z )f = Cf . This completes the proof.

On one hand, the above proposition is an effective tool for weighted shifts (the easy case,
cf. (1.1)). For example, if k is a diagonal kernel and

k(z, w) =
1

1− zw̄
k̃(z, w) (z, w ∈ D),

for some diagonal kernel k̃, then Proposition 4.1 provides a definite criterion for answering
Question 1. This is exactly the case with the Bergman and the weighted Bergman kernels.
On the other hand, a quick inspection reveals that the (matrix) representation of MzM

∗
z for

a tridiagonal shift Mz is rather complicated and the above proposition is less effective in
drawing the conclusion as we did in Theorem 1.2.

Finally, it is worth pointing out that often Berezin symbols play an important role in proving
compactness of linear operators on analytic Hilbert spaces [7]. See [3, 11, 12] and also [4] for
recent accounts on the theory Berezin symbols on analytic Hilbert spaces. However, in the
present context, it is not clear what is the connection between Berezin symbols and compact
perturbations of isometries.
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